The crystal chemistry of sakuraiite

Koichi Momma1, Ritsuro Miyawaki2, Satoshi Matsubara1, Masako Shigeoka1, Toshiro Nagase2, Seiji Kamada2, Shin Ozawa2, Eiji Ohtani2, Masaaki Shimizu3, Akira Kato1

1National Museum Of Nature And Science, Tsukuba, Japan, 2Tohoku University, Sendai, Japan, 3University of Toyama, Toyama, Japan
E-mail: k-momma@kahaku.go.jp

Sakuraiite is an In-bearing sulfide mineral discovered from Ikuno mine, Hyogo Prefecture, Japan. In the original description [1], sakuraiite was reported as tetragonal (pseudo-cubic with c = 2a) with an ideal formula of (Cu,Zn,Fe)3(In,Sn)S4. On the other hand, based on X-ray presession images and chemical analyses, Kissin & Owens [2] concluded that sakuraiite was cubic phase with an ideal formula of (Cu,Zn,Fe,In,Sn)S. The latter interpretation conflicts with the fact that the stoichiometry of sakuraiite is kept constant for a wide-range of compositions by the coupled substitution of (Zn2+,Fe2+)In3+ for Cu+Sn4+, where the Cu is monovalent, while in the hypothetical end-member composition of sakuraiite CuS by Kissin & Owens, Cu should be divalent. In recent years, another problem arose by approval of ishiharaite (Cu,Ga,Fe,In,Zn)S as a distinct new mineral (IMA2013-119) by the commission of the International Mineralogical Association (IMA). Because ishiharaite is reported to have cubic sphalerite-type structure with only one crystallographic site for metal ions [3], the ideal end-member composition of ishiharaite should be defined as CuS, which is ultimately equivalent with the definition of sakuraiite by Kissin & Owens, i.e., CuS with the cubic sphalerite-type structure. If this is the case one of sakuraiite or ishiharaite should be discredited.

In order to sort out confusion and uncertainty of the definition of sakuraiite, the crystal chemistry of sakuraiite was reinvestigated by single-crystal X-ray diffraction of the type specimen (MSN-M18000) registered in the National Museum of Nature and Science, Tokyo. As was reported by previous studies, fine exsolution lamellae with a variety of compositions (Fig. 1) were observed by electron microprobe. Single-crystal X-ray diffraction experiment on one of the domains having a composition of (Cu > Zn, Fe) and (In > Sn) revealed a pseudo-cubic crystal structure with a space group P-42m and a = 5.4500(3) Å, c = 5.4691(3) Å (Rint = 2.61%, R1 = 1.51%). Cu, Zn and Fe atoms are randomly distributed in two crystallographic sites (1a and 2f), while In and Sn are placed in another site (1d). This type of metal ordering is different from any other known sulfide structures having sphalerite-type topology, e.g., sphalerite (F-43m), stannite (I-42m), k"esterite (I-42m or I-4), and chalcopyrite (I-42d).

Based on the crystal structure, the ideal formula of sakuraiite should be written as (Cu,Zn,Fe)3(In,Sn)S4 and it can be considered as one member in a solid solution series of Cu2(Zn,Fe)SnS4 and Zn2CuInS4.

Keywords: sakuraiite, stannite group minerals, solid solution